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The m® row has here the sum
Tm = € ™,
Thus summing 4 by rows we get
R=ri+ry+
=¢% 4 e 2 + e S 4+ .

This is a geometric series and converges absolutely since a > 0.
We cannot infer, however, that A is convergent or that if it were
its sum = R. In fact A4 is divergent. For if it were convergent
each ¢, series must be convergent by 2. This is not so, for

o e;=14+1+4+1+4 ...
is divergent.

43. Application to Power Series. We wish to apply the fore-
going theorem to obtain a result which we shall use later. Let

the power series
P) = ay+ az + ag2? + - 1

have € as a circle of convergence. About any point z within €
let us describe a circle ¢ of radius p which also

lies within €. The point z + 2 will lie in ¢ if ¢
| 2| <p. Hence the series 1) converges abso-
lutely when we replace # by 2 + A; that is 0

P+h)=a,+a;(z+ h) + ay(z +2)2+ o (2

. . <
is an absolutely convergent series. Let us expand

the terms of 2) and write the result as a double series. We get

A=a,+04+04+0+ ...
+az+ah+040+4 ...
+ @y2? + 2 agzh + ah? + 0 + ...
+ ag?® + 3 age®h + 3 ageh? 4+ B3 + ...
+ -

If we sum 3) by rows, we get the absolutely convergent series 2).

From this we cannot infer that 3) is convergent as we saw
in 42, 4
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The series A4 is, however, convergent, as we may easily see as
follows. Let us set |2|=7. Then 1) converges absolutely for
2z = r + p since this point lies within € Thus ‘

oy + o (r 4+ p) + a(r + p)% + -

2 ¢ 2 (4)
=y + & + o p+ e + 2 oyrp + 0gp% 4 -o-

is convergent. Thus the simple series
B=a,+ a2 + a.h + a;2* + 2 aeh + ah? + -
is absolutely convergent since each of its terms is numerically >

the corresponding term of 4). Thus A4 is convergent and we can
sum it by rows or by columns. Summing by rows gives

A=P(z+h).
Summing by columns we get, since the result is the same as before,

P(a+ 1) = P(2) + hP\(2) + 5, BPy(2) + 5 Py () + o (5

where Pi=a+2a2+3az + -

P2= 2a2+2.3a3z+3.4a4z2+...



